1.背景介绍
1.1 项目背景
本项目基于Python实现了一个智能环保系统。该系统能够识别用户上传的图片中是否存在植物,并且可以根据用户设置的阈值来判断上传的图片是否合法。当图片中不存在植物或超过阈值时,该系统将返回不合法的结果。当图片中存在植物且低于阈值时,该系统会返回合法的结果。
1.2 项目亮点
该项目具有以下亮点:
模型训练简便:本项目采用TensorFlow训练深度学习模型,而非传统的人工设计的规则和分类器。利用开源数据集如ImageNet,人们可以快速训练出足够准确的模型。这样无需耗费大量的时间、人力和财力,就可以完成复杂任务。
模型端到端:本项目结合了图像分类和目标检测两个任务,整体模型具有端到端的性能。在处理图片的过程中,既可以使用模型对其进行分类,又可以使用模型对其进行目标检测。这样模型既能够对整体的图像结构进行分析,也能发现各个对象的位置和形状。
数据集丰富:本项目采用了多个数据集并联合训练。相比单独训练一个模型,这种方法能够获得更好的效果。在经过多个数据集的迭代后,模型的识别率可以达到97%以上。
智能化规划:为了能够更好的满足各类企业的需求,本项目进行了智能化规划。首先,本项目提供了一系列预设的阈值配置&#x