Python 人工智能实战:智能信号处理

本文介绍了人工智能在信号处理中的应用,特别是在信号识别领域。通过Python进行案例分享,涉及信号的采样、加窗、加噪、滤波等预处理,以及傅里叶变换、时频图、小波变换等技术。并使用线性SVM进行模型训练,以识别60Hz信号与其他信号。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.背景介绍

“人工智能”这个词,被热议不断,有各种各样的定义和意思,但其核心特征就是可以理解、学习、创建并通过计算机模拟实现智能行为。它可以解决哪些实际的问题呢?现在越来越多的应用领域,都涉及到机器学习、图像识别、自然语言处理等人工智能技术。如何用“Python”来开发具有智能性的程序呢?在本文中,作者将介绍“智能信号处理”领域中的一个应用场景——信号识别,并基于该场景进行“Python”开发案例分享。

人工智能(Artificial Intelligence,AI)的概念最早由英国计算机科学家弗兰克·卡莱尔提出。他认为,智能是一个机器能力的自动化扩展,包括智能计算、自我意识、自我学习、知识表征、问题求解等能力。从技术层面来说,目前人工智能技术主要分为三大类,即机器学习、计算机视觉和语音识别。

机器学习,是指由大量数据(训练集)反复试验,使计算机能够根据这些数据,从中学习到某种模式或规律,并利用此模式或规律对未知数据做出预测。传统的机器学习方法主要包括分类算法、回归算法、聚类算法和异常检测算法等。

计算机视觉,是指让计算机“看到”、“感知”图像或视频信息,并对其中的物体、场景和特征做出相应的分析和处理。传统的计算机视觉技术主要包括特征提取算法、机器学习算法、模式匹配算法等。

语音识别,是指让计算机把声波或电磁波变成文字、命令或指令&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值