1.背景介绍
概述
循环神经网络(Recurrent Neural Networks,简称RNN),是一种深层次的多层结构的前馈神经网络,通过对时间序列数据的处理,可以实现长时记忆、复杂模式识别等功能。它在自然语言处理、语音合成、图像识别、机器翻译等领域都有很好的效果。循环神经网络可以从数据中学习到长期的依赖关系,在预测的时候可以利用历史信息进行推断,极大地提高了预测的准确性。
RNN的优点
- 模型简单:相对于其他类型的神经网络来说,循环神经网络在结构上更加简单,不需要添加很多隐藏层,使得它更容易理解和训练。同时,它也不需要像卷积神经网络那样引入局部连接。
- 容错能力强:因为循环神经网络在学习长期依赖关系,所以它能够捕获到输入数据中长距离的依赖关系,并将其应用于后续的计算。这样就可以保证它的预测结果不受到噪声影响,并且具备较强的预测精度。
- 时序特征学习能力强:循环神经NETWORK具有强大的时序特征学习能力,它能够从时间序列数据中学习到时间相关的特征,并且还可以将这些特征传递给下一个时间步。因此,循环神经网络能够有效地捕获到输入数据中的长期依赖关系。
- 无需归一化:循环神经网络不需要进行任何归一化处理,这使得它可以在不同的上下文环境中使用相同的权重,因