1.背景介绍
语言是现代人类交流的工具之一,世界上有上百亿种语言,但仅有极少数能够被人类精确理解。另一方面,由于电子计算机的迅速普及,越来越多的人都选择了使用计算机进行各种工作。然而,计算机只能理解二进制的数字信号,没有能力处理文本形式的自然语言,因此需要人工智能(AI)对语言进行理解、翻译和生成。语言是一种信息载体,其复杂性和多样性带来了人工智能领域巨大的挑战。机器翻译(MT),或称语言识别与合成(LTR),是人工智能的一个重要方向。它可以帮助用户更加高效地沟通、学习、阅读和聆听。本文将介绍机器翻译的基本概念,以及如何通过开源的深度学习库TensorFlow实现一个简单的机器翻译系统。
2.核心概念与联系
机器翻译是指将一种自然语言从一种语言环境转换为另一种语言环境的过程。人工智能领域对于机器翻译的研究从20世纪70年代就开始了,在过去的几十年中,机器翻译已经取得了惊人的进步,特别是在以英语为源语言的机器翻译任务上取得了惊人的成绩。在过去的两三年里,国际认知计算联盟(ICC)、台湾国立大学语言学系、加州大学圣巴巴拉分校等机构相继开设了机器翻译课程,这些课程大都是基于最新的机器翻译技术。本节将简要介绍相关的核心概念,并阐述它们之间的联系。