1.背景介绍
正态分布,又称为高斯分布或 bell 曲线,是一种概率分布,表示随机变量从均值出发的数据集中的数据点分布。正态分布在人工智能和机器学习领域具有重要的应用价值,例如在神经网络中的激活函数、贝叶斯推理中的概率分布等。本文将从数学原理、Python实战和应用场景等多个角度深入探讨正态分布的内容。
1.1 正态分布的概念与特点
正态分布是一种连续的概率分布,其概率密度函数为:
$$ f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} $$
其中,$\mu$ 表示均值,$\sigma$ 表示标准差。正态分布的特点包括:
- 对称性:正态分布的概率密度函数在均值$\mu$ 处达到最大值,左右两侧对称。
- 单峰性:正态分布的概率密度函数只有一个峰值,即在均值$\mu$ 处。
- 无穷长尾:正态分布的概率密度函数在均值$\mu$ 的两侧都是无穷长的,但随着距离均值$\mu$ 的增加,概率逐渐趋近于0。
- 高斯曲线:正态分布的概率密度函数形状类似于高斯曲线。
1.2 正态分布的参数估计
在实际应用中,我们通常需要根据数据集估计正态分布的参数$\