1.背景介绍
1.1 异常检测的重要性
在现代社会中,数据已经成为了我们生活的一部分。我们的行为、习惯、喜好等都可以通过数据来反映。然而,数据中总是存在一些"异常"的情况,这些异常可能是由于系统故障、恶意攻击、数据录入错误等原因造成的。这些异常数据如果不被及时发现和处理,可能会对我们的决策造成严重的影响。因此,异常检测成为了数据分析中的一个重要环节。
1.2 自编码器与GAN的崛起
近年来,深度学习技术的发展为异常检测提供了新的可能。其中,自编码器(Autoencoder)和生成对抗网络(GAN)是两种重要的深度学习模型,它们在异常检测中的应用也引起了广泛的关注。自编码器通过学习数据的高维表示,能够有效地检测出异常数据。而GAN则通过生成模型和判别模型的对抗学习,能够生成与真实数据相似的数据,从而提高异常检测的准确性。
2.核心概念与联系
2.1 自编码器
自编码器是一种无监督学习的神经网络模型,它的目标是学习一个能够有效表示输入数据的编码。自编码器由编码器和解码器两部分组成,编码器将输入数据编码为一个隐藏表示,解码器则将这个隐藏表示解码为一个与原始输入相似的输出。