1.背景介绍
1.1 强化学习的崛起
强化学习(Reinforcement Learning,简称RL)是近年来人工智能领域的热门研究方向,它是一种通过智能体(agent)与环境的交互,通过试错学习(trial-and-error)和延迟奖励(delayed reward)来学习最优策略的方法。强化学习的目标是让智能体学会在给定环境中做出最优的决策,以获得最大的累积奖励。
1.2 智能制造的挑战
智能制造是工业4.0的重要组成部分,它通过将先进的信息技术和制造技术深度融合,实现制造过程的智能化,提高生产效率和产品质量,降低生产成本。然而,智能制造面临着许多挑战,如设备故障预测、生产调度优化、质量控制等,这些问题的解决需要强大的决策能力和自适应能力。
1.3 强化学习在智能制造中的应用
强化学习以其强大的决策能力和自适应能力,成为解决智能制造中的挑战的有力工具。例如,强化学习可以用于智能制造中的生产调度优化,通过学习最优的生产策略,提高生产效率,降低生产成本。