1. 背景介绍
1.1 人工智能的发展
人工智能(Artificial Intelligence,AI)作为计算机科学的一个重要分支,自20世纪50年代诞生以来,经历了多次发展浪潮。从早期的基于规则的专家系统,到后来的基于统计学习的机器学习,再到近年来的深度学习,AI领域不断取得突破性进展。特别是在自然语言处理(Natural Language Processing,NLP)领域,大型预训练语言模型(Large-scale Pre-trained Language Models)的出现,使得AI在理解和生成人类语言方面取得了前所未有的成果。
1.2 大型预训练语言模型的崛起
近年来,随着计算能力的提升和大量文本数据的可用性,大型预训练语言模型逐渐成为NLP领域的研究热点。从2018年的BERT(Bidirectional Encoder Representations from Transformers)到2019年的GPT-2(Generative Pre-trained Transformer 2),再到2020年的GPT-3(Generative Pre-trained Transformer 3),这些模型在各种NLP任务上都取得了显著的性能提升。然而,随着模型规模的不断扩大,如何充分发挥这些模型的潜力,以及如何将其应用于跨学科研究,成为了一个亟待解决的问题。
2. 核心概念与联系
2.1 语言模型
语言模型(Language Model,LM)是一种用于计算文本序列概率的模型。给定一个文本序列,语言模型可以为其分配一个概率值,表示这个序列在某种语言环境下出现的可能性。语言模型在自然语言处理领域有着广泛的应用,如机器翻译、语音识别、文本生成等。
2.2 预训练与微调
预训练(Pre-training)是指在大量无标注数据上训练一个模型,使其学会一些通用的知识和能力。微调(Fine-tuning)是指在预训练模型的基础上,使用少量有标注数据对模型进行调整,使其适应特定任务。预训练和微调的过程使得模型能够在少量标注数据的情况下,取得很好的性能。
2.3 Transformer架构
Transformer是一种基于自注意力(Self-Attention)机制的神经网络架构,由Vaswani等人于2017年提出。相较于传统的循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN),Transformer在处理长序列时具有更好的性能和并行性。大型预训练语言模型如BERT和GPT均基于Transfor