1. 背景介绍
1.1 语言模型的崛起
近年来,随着深度学习技术的快速发展,语言模型在自然语言处理领域取得了显著的成果。从BERT、GPT-2到GPT-3,这些先进的预训练模型在各种自然语言处理任务中都取得了突破性的成绩,如机器翻译、文本生成、情感分析等。然而,随着语言模型的能力越来越强大,其安全与隐私保护问题也日益凸显。
1.2 安全与隐私保护的挑战
在实际应用中,语言模型可能面临恶意攻击和数据泄露的风险。恶意攻击者可能通过对模型的输入进行精心设计,使模型产生不符合预期的输出,从而达到攻击目的。此外,由于训练数据中可能包含敏感信息,如用户隐私数据、商业机密等,模型在训练过程中可能会“学习”到这些信息,从而导致数据泄露。因此,如何在保证模型性能的同时,确保模型的安全与隐私保护,成为了当前研究的重要课题。
2. 核心概念与联系
2.1 语言模型
语言模型是一种用于描述自然语言序列概率分布的数学模型。给定一个词序列,语言模型可以预测下一个词的概率分布。深度学习时代的语言模型通常采用神经网络结构,如循环神经网络(RNN)、长短时记忆网络(LSTM)和Transformer等。