实战案例:SFT有监督精调在智能城市领域的应用

本文探讨了智能城市的发展与挑战,重点介绍了有监督精调(SFT)技术在预训练模型基础上的应用。SFT在计算机视觉、NLP等领域取得成功,为智能城市提供解决方案。文章详细阐述了预训练模型、SFT原理,以及在交通监控、能源管理、环境监测等领域的实践案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 背景介绍

1.1 智能城市的发展与挑战

智能城市是一个综合性的概念,涵盖了交通、能源、环境、安全等多个领域。随着科技的发展,智能城市的建设越来越受到关注。然而,智能城市的建设也面临着许多挑战,如数据量大、数据类型多样、实时性要求高等。为了解决这些问题,我们需要引入更先进的技术手段。

1.2 有监督精调技术的崛起

有监督精调(Supervised Fine-tuning, SFT)是一种在预训练模型基础上进行微调的技术,通过在特定任务上进行有监督学习,使模型能够更好地适应新任务。近年来,SFT技术在计算机视觉、自然语言处理等领域取得了显著的成果,为智能城市领域的应用提供了新的思路。

2. 核心概念与联系

2.1 预训练模型

预训练模型是在大量无标签数据上进行预训练的深度学习模型,可以提取出数据的高层次特征。预训练模型可以作为下游任务的特征提取器,提高模型的泛化能力。

2.2 有监督精调

有监督精调是在预训练模型的基础上,利用有标签的数据进行微调,使模型能够更好地适应新任务。有监督精调可以分为两个阶段:冻结预训练模型参数进行特征提取,然后解冻部分或全部参数进行微调。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值