1. 背景介绍
1.1 智能城市的发展与挑战
智能城市是一个综合性的概念,涵盖了交通、能源、环境、安全等多个领域。随着科技的发展,智能城市的建设越来越受到关注。然而,智能城市的建设也面临着许多挑战,如数据量大、数据类型多样、实时性要求高等。为了解决这些问题,我们需要引入更先进的技术手段。
1.2 有监督精调技术的崛起
有监督精调(Supervised Fine-tuning, SFT)是一种在预训练模型基础上进行微调的技术,通过在特定任务上进行有监督学习,使模型能够更好地适应新任务。近年来,SFT技术在计算机视觉、自然语言处理等领域取得了显著的成果,为智能城市领域的应用提供了新的思路。
2. 核心概念与联系
2.1 预训练模型
预训练模型是在大量无标签数据上进行预训练的深度学习模型,可以提取出数据的高层次特征。预训练模型可以作为下游任务的特征提取器,提高模型的泛化能力。
2.2 有监督精调
有监督精调是在预训练模型的基础上,利用有标签的数据进行微调,使模型能够更好地适应新任务。有监督精调可以分为两个阶段:冻结预训练模型参数进行特征提取,然后解冻部分或全部参数进行微调。