RAG模型在专利检索领域的应用实践

本文介绍了RAG模型在专利检索中的应用,包括模型的核心算法、操作步骤和最佳实践。通过结合信息检索与生成,RAG模型提高了专利检索的效率和准确性,适用于专利申请、侵权判断和技术创新等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 背景介绍

1.1 专利检索的重要性

专利检索是知识产权领域的一项重要工作,它涉及到专利申请、专利侵权判断、技术创新和竞争情报等多个方面。随着科技的快速发展和全球化进程的加速,专利检索的需求越来越大,而传统的检索方法已经难以满足这种需求。因此,研究和开发新的专利检索技术变得尤为重要。

1.2 RAG模型简介

RAG(Retrieval-Augmented Generation)模型是一种基于深度学习的自然语言处理技术,它结合了检索和生成两种方法,可以在大规模文本数据中进行高效、准确的信息检索和生成。RAG模型在问答、摘要、翻译等任务上取得了显著的成果,因此有理由相信它在专利检索领域也具有很大的潜力。

2. 核心概念与联系

2.1 信息检索与生成

信息检索是从大规模文本数据中找到与查询相关的文档或片段的过程,而生成则是根据给定的输入生成新的文本。RAG模型将这两种方法结合起来,通过检索到的文档来生成回答或摘要。

2.2 RAG模型的组成

RAG模型主要由两个部分组成:检索器(Retriever)和生成器(Generator)。检索器负责从大规模文本数据中检索与输入相关的文档,生成器则根

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值