AGI的知识获取:数据挖掘、知识工程与迁移学习
1. 背景介绍
1.1 人工智能的发展历程
人工智能(Artificial Intelligence, AI)作为一门富有前景的学科,自20世纪50年代问世以来,经历了多个阶段的发展。最初的AI系统主要集中在特定领域的专家系统和机器学习算法上。随着数据和计算能力的不断增长,机器学习和深度学习技术逐渐占据主导地位,使得AI系统在诸如计算机视觉、自然语言处理等领域取得了突破性进展。
1.2 通用人工智能(AGI)的概念
然而,现有的AI系统大多局限于狭义人工智能(Narrow AI),即只能完成特定的任务。通用人工智能(Artificial General Intelligence, AGI)旨在创建一种与人类智能相似、能够解决各种复杂问题的通用型智能系统。AGI系统需要具备广泛的知识获取、推理和学习迁移等能力,以应对不同场景和任务。
1.3 知识获取的重要性
知识是AGI系统的基础和核心。没有丰富的知识,AGI将难以理解复杂的环境、执行复杂的任务。因此,知识获取对于AGI的发展至关重要。本文将重点探讨AGI知识获取的三个关键技术:数据挖掘、知识工程和迁移学习。
2. 核心概念与联系
2.1 数据挖掘
数据挖掘(Data Mining)指从大量原始数据中发现隐藏信息的