LSTM在智能制造中的过程优化
作者:禅与计算机程序设计艺术
1. 背景介绍
随着工业 4.0 时代的到来,智能制造已经成为制造业转型升级的重要方向。在智能制造中,如何利用先进的人工智能技术,对制造过程进行优化和控制,提高生产效率和产品质量,是制造企业亟需解决的关键问题。长短期记忆网络(LSTM)作为一种特殊的循环神经网络,在时间序列预测和动态系统建模等方面有出色的表现,在智能制造中的过程优化中展现出巨大的潜力。
2. 核心概念与联系
2.1 LSTM 网络结构
LSTM 网络是一种特殊的循环神经网络,它通过引入门控机制来解决标准 RNN 中出现的梯度消失和梯度爆炸问题。LSTM 网络的基本单元包括输入门、遗忘门和输出门,通过这三个门控制着细胞状态的更新和输出。LSTM 单元的数学公式如下:
$i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + b_i)$ $f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + b_f)$ $o_t = \sigma(W_{xo}x_t + W_{ho}h_{t-1} + b_o)$ $\tilde{c}t = \tanh(W{xc}x_t + W_{hc}h_{t-1} + b_c)$ $c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_