AI大模型RAG进阶应用最佳实战介绍——从架构到技术细节

本文深入探讨了高级检索增强生成技术(RAG),包括分块与向量化、搜索索引、语境增强、查询变换等关键技术。RAG通过结合搜索技术和大语言模型,为生成回答提供信息。文中介绍了如HyDE、查询路由和智能体等高级技术,以及在LlamaIndex和LangChain等平台的实现,旨在帮助开发者理解并优化RAG系统。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高级 RAG 技术:图解概览

本文全面研究了高级检索增强式生成技术 (RAG) 及其算法,系统地整理了各种方法。文章中还包含了我知识库中与提到的各种实现和研究相关的链接集。

由于本文的目的在于概述和解释当前可用的 RAG 算法和技术,所以我不会深入探讨代码实现的细节,仅做简要提及,并推荐阅读丰富的相关文档与教程。

引言

如果您已熟悉 RAG(检索增强生成)概念,请直接跳至高级 RAG 部分。

检索增强生成(Retrieval Augmented Generation,简称 RAG)为大语言模型 (LLMs) 提供了从数据源检索的信息,以此为基础生成回答。简而言之,RAG 结合了搜索技术和大语言模型的提示功能,即模型根据搜索算法找到的信息作为上下文来回答查询问题。无论是查询还是检索的上下文,都会被整合到发给大语言模型的提示中。

2023 年,基于 RAG 架构的大语言模型系统成为最受欢迎的技术。许多产品几乎全依赖 RAG 架构,这包括结合网络搜索引擎和大语言模型的问答服务,以及数以百计的数据交互应用程序。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值