1. 背景介绍
1.1 人工智能与强化学习
人工智能(Artificial Intelligence, AI)是当代科技发展的前沿领域,旨在模拟人类智能,使机器能够执行需要人类智能才能完成的复杂任务。强化学习(Reinforcement Learning, RL)是人工智能的一个重要分支,它关注如何基于环境反馈来学习采取最优行为策略,以最大化预期的长期回报。
1.2 Q-Learning与博弈论
Q-Learning是强化学习中的一种基于价值迭代的无模型算法,通过不断尝试和学习,逐步优化行为策略。博弈论(Game Theory)研究多个理性决策者在具有相互影响的情况下如何做出最优决策。将Q-Learning与博弈论相结合,可以为复杂的多智能体系统提供有效的决策支持。
1.3 映射思维
映射(Mapping)思维是一种将复杂问题转化为简单映射关系的思维方式。它将问题抽象为状态到行为的映射,通过学习优化这个映射关系,来获得最优的决策方案。这种思维方式有助于理解和解决复杂的人工智能问题。
2. 核心概念与联系
2.1 Q-Learning基本概念
Q-Learning算法的核心是学习一个行为价值函数Q(s,a),表示在状态s下执行行为a的长期预期回报。通过不断探索和利用,逐步更新和优化这个Q函数,最终得到最优策略。
其中:
- 状态(State) s 表示系统当前的状