1. 背景介绍
1.1 意图检测的崛起
随着人工智能技术的不断发展,人机交互的方式正在发生着翻天覆地的变化。从传统的命令行界面到图形用户界面,再到如今的语音助手和聊天机器人,人们与机器之间的交流变得越来越自然和便捷。而意图检测技术正是实现这种自然交互的关键之一。
意图检测,顾名思义,就是指从用户的自然语言输入中识别出其背后的意图。例如,当用户说“我想订一张去北京的机票”时,意图检测系统需要能够识别出用户的意图是“订机票”,并提取出相关的关键信息,例如目的地是“北京”。
1.2 传统方法的局限性
传统的意图检测方法主要基于规则和模板匹配。这种方法需要人工定义大量的规则和模板,并且难以处理自然语言的多样性和复杂性。例如,对于“我想去北京”和“我打算去北京旅游”这两句话,传统的意图检测方法可能无法识别出它们表达的是相同的意图。
1.3 Transformers的优势
近年来,随着深度学习技术的兴起,基于神经网络的意图检测方法逐渐成为主流。其中,Transformers模型凭借其强大的特征提取能力和语义理解能力,在意图检测任务中取得了显著的效果。
Transformers模型采用了一种基于自注意力机制的架构,能够有效地捕捉句子中不同词语之间的语义关系。同时ÿ