1. 背景介绍
随着人工智能(AI)技术的迅猛发展,其应用领域日益广泛,从自动驾驶汽车到医疗诊断,从金融欺诈检测到智能家居,AI 正在改变我们的生活方式。然而,AI 技术的普及也带来了新的安全挑战。恶意攻击者可以利用 AI 系统的漏洞进行攻击,例如数据中毒、模型窃取、对抗样本攻击等,对个人隐私、财产安全甚至国家安全造成严重威胁。因此,人工智能安全问题日益受到关注,保护 AI 系统免受攻击成为一项重要的任务。
1.1 AI 安全威胁的类型
AI 安全威胁可以分为以下几类:
- 数据中毒攻击: 攻击者通过向训练数据中注入恶意样本,使模型学习到错误的模式,从而导致模型预测结果出现偏差,甚至完全失效。
- 模型窃取攻击: 攻击者通过查询模型的输出来推断模型的内部结构和参数,从而窃取模型的知识产权,甚至复制出相同的模型。
- 对抗样本攻击: 攻击者通过对输入数据进行微小的扰动,使模型输出错误的结果,例如将停车标志识别为限速标志,从而导致自动驾驶汽车出现事故。
- 隐私泄露: AI 模型在训练过程中可能会学习到敏感信息,例如个人身份信息、医疗记录等,攻击者可以通过查询模型