1. 背景介绍
随着互联网和移动设备的普及,我们正处于一个数据爆炸的时代。然而,这些数据中很大一部分是非结构化的,例如图像、音频和文本。这些非结构化数据蕴含着丰富的信息,但传统的数据库和数据处理方法难以对其进行有效分析。因此,处理非结构化数据成为了人工智能领域的一个重要挑战。
光学字符识别(OCR)、自动语音识别(ASR)和信息抽取是三种关键技术,它们能够将非结构化数据转换为结构化数据,从而使我们能够对其进行分析和利用。
1.1 OCR:让机器读懂文字
OCR 技术可以将图像中的文本转换为机器可读的文本格式。这项技术应用广泛,例如:
- 文档数字化: 将纸质文档转换为电子文档,方便存储和检索。
- 车牌识别: 自动识别车牌号码,用于交通管理和车辆追踪。
- 票据识别: 自动识别票据信息,用于财务管理和报销。
1.2 ASR:让机器听懂语言
ASR 技术可以将语音转换为文本格式。这项技术应用广泛,例如:
- 语音助手: 例如 Siri 和 Alex