语言与智能的融合之路:LLM驱动单智能体系统智能化发展

本文探讨了大规模语言模型(LLM)如何推动人工智能系统的发展,从LLM的崛起、核心能力到实际应用。LLM通过自监督学习展现强大的语义理解和生成能力,为构建通用智能体系统提供了可能。文章还介绍了LLM的训练过程、生成策略,并展望了未来的发展趋势,包括模型规模增长、多模态融合和在线学习等挑战。
摘要由CSDN通过智能技术生成

语言与智能的融合之路:LLM驱动单智能体系统智能化发展

1.背景介绍

1.1 人工智能的发展历程

人工智能(Artificial Intelligence, AI)是当代科技发展的重要领域,自20世纪50年代诞生以来,已经经历了几个重要的发展阶段。早期的人工智能系统主要基于符号主义和逻辑推理,如专家系统、规则引擎等。20世纪90年代,机器学习和神经网络的兴起,推动了人工智能进入数据驱动的连接主义时代。

1.2 大规模语言模型(LLM)的崛起

近年来,benefromed by 大规模计算能力、海量数据和新型深度学习算法,大规模语言模型(Large Language Model, LLM)取得了突破性进展,代表有GPT、BERT、XLNet等。LLM通过自监督学习从大量文本语料中捕捉语义和上下文关联,展现出惊人的自然语言理解和生成能力。

1.3 LLM驱动智能体系统的兴起

LLM的出现为构建通用人工智能系统带来了新的契机。传统的人工智能系统往往专注于某一特定领域或任务,而LLM则具备跨领域的通用语义理解和推理能力。通过将LLM与任务相关的知识库相结合,可以构建出多功能、通用的智能体系统,为实现人工通用智能(Artificial General Intelligence, AGI)迈出关键一步。

2.核心概念与联系

2.1 语言模型与智能<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值