语言与智能的融合之路:LLM驱动单智能体系统智能化发展
1.背景介绍
1.1 人工智能的发展历程
人工智能(Artificial Intelligence, AI)是当代科技发展的重要领域,自20世纪50年代诞生以来,已经经历了几个重要的发展阶段。早期的人工智能系统主要基于符号主义和逻辑推理,如专家系统、规则引擎等。20世纪90年代,机器学习和神经网络的兴起,推动了人工智能进入数据驱动的连接主义时代。
1.2 大规模语言模型(LLM)的崛起
近年来,benefromed by 大规模计算能力、海量数据和新型深度学习算法,大规模语言模型(Large Language Model, LLM)取得了突破性进展,代表有GPT、BERT、XLNet等。LLM通过自监督学习从大量文本语料中捕捉语义和上下文关联,展现出惊人的自然语言理解和生成能力。
1.3 LLM驱动智能体系统的兴起
LLM的出现为构建通用人工智能系统带来了新的契机。传统的人工智能系统往往专注于某一特定领域或任务,而LLM则具备跨领域的通用语义理解和推理能力。通过将LLM与任务相关的知识库相结合,可以构建出多功能、通用的智能体系统,为实现人工通用智能(Artificial General Intelligence, AGI)迈出关键一步。