1. 背景介绍
1.1 强化学习概述
强化学习 (Reinforcement Learning, RL) 作为机器学习的一个重要分支,专注于让智能体 (Agent) 通过与环境的交互学习如何做出最优决策。智能体通过试错的方式,从环境中获得奖励或惩罚,并不断调整自身的策略,以最大化累积奖励。
1.2 探索与利用的困境
在强化学习中,探索 (Exploration) 和利用 (Exploitation) 是一对经典的矛盾。探索是指尝试新的行为,以发现潜在的更优策略;而利用是指根据已有的经验,选择当前认为最优的行为。
- 探索: 有助于发现新的、潜在更优的策略,但可能会导致短期收益较低,甚至遭受惩罚。
- 利用: 可以最大化短期收益,但可能会错过潜在的更优策略,导致长期收益受限。
如何在探索和利用之间取得平衡,是强化学习算法设计中的一个关键问题。
2. 核心概念与联系
2.1 马尔可夫决策过程 (MDP)
马尔可夫决策过程 (Markov Decision Process, MDP) 是强化学习问题的数学模型,它描述了智能体与环境交互的过程。MDP 由以下要素组成&#