1. 背景介绍
1.1 推荐系统的重要性
在信息爆炸的时代,用户面临着海量的数据和选择,如何高效地获取所需信息和服务成为一大难题。推荐系统应运而生,它通过分析用户行为和偏好,为用户推荐个性化的内容和产品,从而提升用户体验和转化率。
1.2 传统推荐系统面临的挑战
传统的推荐系统,如基于协同过滤和基于内容的推荐,在实际应用中存在一些局限性:
- 数据稀疏性: 对于新用户或冷启动物品,由于缺乏足够的数据,难以进行准确的推荐。
- 可解释性差: 模型的推荐结果难以解释,不利于用户理解和信任。
- 实时性不足: 难以应对用户兴趣的动态变化和实时推荐需求。
1.3 AI大模型的优势
AI大模型,如深度学习模型,在处理海量数据、学习复杂模式和进行特征提取方面具有显著优势,为解决传统推荐系统面临的挑战提供了新的思路。
2. 核心概念与联系
2.1 AI大模型
AI大模型是指具有大量参数和复杂结构的深度学习模型,例如 Transformer、BERT 等。这些模型能够从