1. 背景介绍
1.1 多智能体系统与LLM的融合
多智能体系统(MAS)由多个智能体组成,它们彼此交互并协作以实现共同目标。近年来,随着大型语言模型(LLM)的兴起,LLM的强大语言理解和生成能力为MAS带来了新的可能性。LLM-based MAS利用LLM增强智能体的沟通、协作和决策能力,从而实现更复杂的任务和目标。
1.2 评估指标与方法的重要性
评估LLM-based MAS的性能和效果对于系统的开发和优化至关重要。合适的评估指标和方法能够帮助我们:
- 理解系统行为:评估指标可以量化系统的性能,帮助我们理解系统在不同场景下的行为和表现。
- 识别问题和瓶颈:通过评估结果,我们可以发现系统中存在的问题和瓶颈,并针对性地进行改进。
- 比较不同方法和模型:评估指标可以作为比较不同方法和模型性能的基准,帮助我们选择最优方案。
- 指导系统设计和优化:通过评估结果,我们可以获得关于系统设计和优化的宝贵信息,指导我们进行进一步的改进。