一切皆是映射:深度Q网络(DQN)在交通控制系统的应用
1. 背景介绍
1.1 交通拥堵:城市发展的痛点
随着城市化进程的加速,交通拥堵已成为全球各大城市面临的共同难题。交通拥堵不仅造成时间和经济上的损失,更导致环境污染和生活质量下降。传统的交通控制方法,如固定配时信号灯,已无法满足日益复杂的交通需求。
1.2 人工智能:智慧交通的曙光
人工智能技术的发展为解决交通拥堵问题带来了新的希望。深度强化学习作为人工智能领域的重要分支,其在决策和控制方面的优势使其成为智能交通系统研究的热点。
1.3 深度Q网络(DQN):强化学习的利器
深度Q网络(DQN)是一种基于深度学习和强化学习的算法,其核心思想是利用神经网络逼近价值函数,并通过不断试错学习最优策略。DQN在游戏、机器人控制等领域取得了巨大成功,也为交通控制系统带来了新的可能性。