1. 背景介绍
1.1 强化学习的兴起
近年来,强化学习(Reinforcement Learning, RL)作为机器学习的一个重要分支,在游戏、机器人控制、自然语言处理等领域取得了显著的成果。强化学习的核心思想是让智能体(Agent)通过与环境交互,不断学习并优化自己的行为策略,以获得最大的累积奖励。
1.2 Q-learning 的重要地位
Q-learning 是一种经典的强化学习算法,其核心是学习一个状态-动作值函数(Q 函数),该函数能够评估在特定状态下采取特定动作的长期价值。深度 Q-learning (Deep Q-learning, DQN) 则是将深度学习与 Q-learning 相结合,利用深度神经网络来逼近 Q 函数,从而处理高维状态空间和复杂动作空间的强化学习问题。
1.3 学习率与折扣因子的重要性
在深度 Q-learning 中,学习率和折扣因子是两个至关重要的超参数,它们直接影响算法的学习效率和最终性能。学习率控制着算法更新 Q 函数的速度,而折扣因子则决定了未来奖励对当前决策的影响程度。选择合适的学习率和折扣因子对于训练一个高效稳定的深度 Q-learning 模型至关重要。