一切皆是映射:元学习中的神经架构搜索(NAS)
作者:禅与计算机程序设计艺术
1. 背景介绍
1.1 人工智能的局限性与挑战
人工智能 (AI) 的最新进展在各个领域都取得了显著的成果,例如图像识别、自然语言处理和游戏。然而,这些成功在很大程度上依赖于手动设计的复杂神经网络架构,这需要领域专家付出巨大的努力和时间。此外,为特定任务找到最佳架构仍然是一项艰巨的挑战,因为搜索空间巨大且难以驾驭。
1.2 神经架构搜索 (NAS) 的兴起
神经架构搜索 (NAS) 旨在通过自动化架构工程过程来解决这些限制。NAS 的目标是使用搜索算法来发现针对给定任务和数据集的最佳神经网络架构。这使 AI 系统能够更有效地学习,而无需人工干预,从而实现改进的性能和效率。
1.3 元学习:学习如何学习
元学习,也被称为“学习如何学习”,是一个新兴的机器学习领域,专注于训练算法,使其能够从少量数据中快速学习新任务。元学习的核心思想是利用先前学习的经验来提高新任务的学习速度。这与传统机器学习方法形成对比,后者需要大量数据才能获得良好的性能。