1. 背景介绍
1.1 人工智能的"数据饥渴"难题
近年来,人工智能(AI)取得了举人瞩目的成就,其应用渗透到各个领域,包括图像识别、自然语言处理、医疗诊断等等。然而,AI 的成功很大程度上依赖于海量数据的训练,这导致了"数据饥渴"难题。在许多实际场景中,获取大量标注数据非常困难,甚至是不可能的。例如,在罕见疾病诊断、新产品缺陷检测等领域,数据样本极其有限。
1.2 "小样本"学习的崛起
为了解决"数据饥渴"问题,"小样本"学习应运而生。小样本学习旨在利用少量标注数据训练出高性能的 AI 模型。它打破了传统 AI 对海量数据的依赖,为低资源场景下的 AI 应用开辟了新的道路。
1.3 本文的目的和结构
本文将深入探讨"小样本"学习的核心理念、算法原理、实际应用以及未来发展趋势。我们将从以下几个方面进行阐述:
- 核心概念与联系
- 核心算法原理具体操作步骤
- 数学模型和公式详细讲解举例说明
- 项目实践:代码实例和详细解释说明
- 实际应用场景
- 工具和资源推荐
- 总结:未来发展趋势与挑战
- 附录&#x