1. 背景介绍
1.1. AI 自动化部署的兴起
近年来,随着人工智能技术的快速发展,越来越多的企业开始将 AI 应用于各种业务场景,例如图像识别、自然语言处理、预测分析等。为了提高 AI 应用的开发效率和部署速度,AI 自动化部署应运而生。AI 自动化部署是指利用自动化工具和技术,将 AI 模型从开发环境快速、高效地部署到生产环境,从而加速 AI 应用的落地。
1.2. 监控和日志管理的重要性
在 AI 自动化部署过程中,监控和日志管理是至关重要的环节。监控可以实时跟踪 AI 模型的运行状态,及时发现潜在问题;日志管理则可以记录 AI 模型的运行情况,为故障排查和性能优化提供依据。有效的监控和日志管理可以提高 AI 应用的可靠性、稳定性和可维护性,保障 AI 应用的顺利运行。
2. 核心概念与联系
2.1. 监控
- 指标监控: 收集和分析 AI 模型的关键性能指标,例如准确率、召回率、F1 值、AUC 等,以及资源使用情况,例如 CPU 使用率、内存占用率、网络流量等。
- 事件监控: 捕获 AI 模型运行过程中发生的异常事件,例如模型加载失败、数据预处理错误、预测结果异常等。