1. 背景介绍
1.1 深度学习的局限性
近年来,深度学习在诸多领域取得了显著的成就,但其成功很大程度上依赖于大量的标注数据。然而,在许多实际应用场景中,获取大量标注数据的成本高昂且耗时,甚至难以获得。例如,在医疗影像诊断、罕见疾病识别等领域,由于样本数量有限,传统的深度学习模型往往难以达到理想的性能。
1.2 少样本学习的兴起
为了解决深度学习面临的数据瓶颈问题,少样本学习(Few-shot Learning)应运而生。少样本学习旨在利用少量样本训练模型,使其能够快速适应新的任务。与传统的深度学习方法相比,少样本学习更加灵活、高效,更能满足实际应用的需求。
1.3 元学习:迈向通用人工智能
元学习(Meta-Learning)是实现少样本学习的重要途径之一。元学习的目标是让模型学会学习,即从少量样本中学习如何学习新的任务。元学习模型通常包含两个层次的学习过程:
- 内层循环(Inner Loop): 学习特定任务的模型参数。
- 外层循环(Outer Loop): 学