MCTS与蒙特卡罗方法的区别
1. 背景介绍
1.1 蒙特卡罗方法的由来与发展
蒙特卡罗方法(Monte Carlo method),也称统计模拟方法,是一种以概率统计理论为指导的数值计算方法。它诞生于20世纪40年代美国的“曼哈顿计划”,名字来源于赌城蒙特卡罗,象征着该方法的随机性。蒙特卡罗方法的核心思想是:通过大量随机样本的统计结果来逼近所求解问题的精确解。
1.2 蒙特卡罗方法的应用领域
蒙特卡罗方法应用广泛,例如:
- 科学计算: 求解高维积分、偏微分方程等。
- 金融工程: 期权定价、风险管理等。
- 机器学习: 强化学习、随机梯度下降等。
- 计算机图形学: 全局光照渲染、路径追踪等。
1.3 蒙特卡罗树搜索(MCTS)的兴起与应用
蒙特卡罗树搜索(Monte Carlo Tree Search,MCTS)是蒙特卡罗方法的一种应用,它将蒙特卡罗模拟与树搜索结合