MAML原理与代码实例讲解
作者:禅与计算机程序设计艺术
1. 背景介绍
1.1 元学习与少样本学习
机器学习的终极目标是让机器具备像人类一样学习的能力。近年来,深度学习的兴起使得机器学习在图像识别、语音识别、自然语言处理等领域取得了突破性进展。然而,传统的深度学习方法通常需要大量的标注数据才能训练出泛化能力强的模型。在许多实际应用场景中,例如医疗诊断、个性化推荐等,获取大量的标注数据往往非常困难且成本高昂。
为了解决这一问题,元学习(Meta-Learning)应运而生。元学习的目标是让机器学会如何学习,即从少量样本中快速学习新的概念和技能。少样本学习(Few-shot Learning)是元学习的一个重要分支,其目标是在只有少量标注样本的情况下训练出泛化能力强的模型。
1.2 MAML的提出
模型无关元学习(Model-Agnostic Meta-Learning, MAML)是由Chelsea Finn等人在2017年提出的一种元学习算法。MAML是一种基于梯度的元学习算法,其核心思想是找到一个对于任务分布敏感的模型初始化参数,使得模型能够在面对新的任务时,只需少量样本和少量梯度更新步骤就能快速适应。