文章目录
大语言模型的fewshot学习原理与代码实例讲解0
1.背景介绍
Few-shot学习(少样本学习)是指机器学习模型在只给定非常少量的训练样本的情况下,就能够快速学习新任务、完成新任务的一种学习能力。它旨在解决现实世界中存在大量的小样本任务,而传统的机器学习方法需要大量的标注数据才能取得良好效果的问题。
近年来,随着预训练语言模型(如BERT、GPT等)的出现和发展,基于大规模预训练语言模型的Few-shot学习方法逐渐兴起,在自然语言处理的各个任务中取得了令人瞩目的成果。这种新兴的Few-shot学习方法,充分利用预训练语言模型从海量无标注语料中学到的丰富语义知识,配合恰当的Prompt设计,能够在小样本场景下展现出强大的快速学习和泛化能力。
本文将深入探讨大语言模型Few-shot学习的原理,并通过代码示例具体讲解如何利用Few-shot学习实现文本分类任务,帮助读者全面了解Few-shot学习技术。
2.核心概念与联系
Few-shot学习涉及以下几个核心概念:
-
预训练语言模型(Pretrained Language Models):指在大规模无标注语料上预训练得到的深度神经网络模型,如BERT、RoBERTa、GPT等。这些模型能够学习到语言的通用表征和语义知识。
-
任务描述(Task Description):用自然语言描述要执行的具体任务,如"请判断以下文本的情感倾向是正面还是负面"。