1.背景介绍
在数字化转型的浪潮中,智能物流与供应链管理的革新成为了企业提升效率、降低成本的关键环节。随着人工智能技术的飞速发展,特别是大型语言模型的突破性进展,为物流和供应链管理带来了前所未有的机遇。本文将深入探讨如何利用AI大模型优化智能物流与供应链管理,并提供实际案例和技术指导。
2.核心概念与联系
人工智能与物流管理
人工智能(Artificial Intelligence, AI)是指让计算机系统能够执行通常需要人类智能的任务的技术。在物流领域,AI的应用包括但不限于需求预测、库存管理、路径优化等。
大型语言模型与供应链管理
大型语言模型(Large Language Models, LLMs)如GPT-3、BERT等,是AI领域的最新进展。它们能够理解和生成自然语言文本,为供应链管理中的信息处理和决策支持提供了新的可能性。
3.核心算法原理具体操作步骤
需求预测
利用LLM进行需求预测的步骤如下:
- 数据收集:收集历史销售数据、市场趋势、季节性因素等。
- 特征工程:选择或构造对预测有帮助的特征。