从零开始大模型开发与微调:Ag_news数据集介绍和数据清洗
1. 背景介绍
1.1 大模型与微调的重要性
近年来,随着深度学习技术的快速发展,大规模预训练语言模型(Pre-trained Language Models,PLMs)已经成为自然语言处理(Natural Language Processing,NLP)领域的研究热点。这些大模型通过在海量无标注文本语料上进行预训练,可以学习到丰富的语言知识和通用语义表示。在实际应用中,我们通常采用微调(Fine-tuning)的方式,在特定任务的标注数据上对预训练模型进行二次训练,使其能够快速适应下游任务。微调已经成为利用大模型解决实际NLP问题的主流范式。
1.2 Ag_news数据集简介
Ag_news是一个用于文本分类任务的经典数据集。它来源于AG新闻语料库,包含了大约12万篇英文新闻文章,分属4个类别:World、Sports、Business和Sci/Tech。每个类别各有3万篇文章,数据集总共约1.2GB。Ag_news常被用作文本分类任务的基准数据集,用于评估各种分类算法的性能。
1.3 数据清洗的必要性
原始的Ag_news数据集中存在一些噪声数据和不规范的格式,直接将其用于模型训练可能会影响模型的性能。因此,在使用该数据集进行大模型微调之前,我们需要对其进行必要的清洗和预处理,包括去除无效样本、统一数据格式、分词、构建词表等。高质量的训练数