K-Means聚类的可解释AI:让聚类结果更加透明可信
1.背景介绍
1.1 聚类分析概述
聚类分析是一种无监督学习方法,旨在将相似的数据点分组到同一个簇中,而不同的数据点分到不同的簇中。它在数据挖掘、模式识别、图像分割等领域有广泛应用。
1.2 K-Means聚类算法
K-Means是最常用、最经典的聚类算法之一。它以k为参数,把n个数据对象划分为k个聚类,使得每个聚类内的数据对象相似度较高,而不同聚类间的数据对象相似度较低。
1.3 可解释AI的重要性
随着AI和机器学习的快速发展,模型的复杂度和黑盒特性日益增加。为了让用户信任并采纳AI的决策,我们需要赋予模型以可解释性,让其内部逻辑和推理过程透明可查,这就是可解释AI。
2.核心概念与联系
2.1 聚类 Clustering
聚类就是将物理或抽象对象的集合组织成为类似的对象组成的多个类的过程。组成聚类的类称为簇。
2.2 K-Means
K-Means通过迭代寻找k个聚类的一种划分方案,使得用于度量聚类效果的代价函数最小。
2.3 可解释性 Interpretability
可解释性指让人理解决策是如何做出