大语言模型原理与工程实践:数据瓶颈问题分析和解决方法原理与应用

在这里插入图片描述

大语言模型原理与工程实践:数据瓶颈问题分析和解决方法原理与应用

关键词:大语言模型, 数据瓶颈, 数据质量, 数据增强, 迁移学习, 预训练, 微调, 自监督学习, 数据标注, 数据治理

文章目录

1. 背景介绍

1.1 问题的由来

在过去的几年里,随着深度学习技术的飞速发展,大规模语言模型(Large Language Models, LLMs)在自然语言处理(Natural Language Processing, NLP)领域取得了显著的进展。这些模型通过在大规模无标签文本数据上进行预训练,学习到了丰富的语言知识和常识,并在各种NLP任务中表现出色。然而,随着模型规模的不断扩大和应用场景的不断拓展,数据瓶颈问题日益凸显,成为制约大语言模型进一步发展的关键因素。

1.2 研究现状

当前,大语言模型的研究和应用主要集中在以下几个方面:

  1. 预训练和微调
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值