大语言模型原理与工程实践:AI系统如何实现真正的终身学习?

在这里插入图片描述

大语言模型原理与工程实践:AI系统如何实现真正的终身学习?

关键词:人工智能、终身学习、持续学习、知识更新、适应性、神经网络、迁移学习

1. 背景介绍

1.1 问题的由来

人工智能(AI)系统在许多领域取得了显著进展,但大多数AI模型在训练完成后就固定不变,难以适应新的知识和变化的环境。这与人类的学习过程形成鲜明对比,人类能够持续学习、更新知识,并将已有知识应用到新的领域。因此,如何使AI系统实现真正的终身学习,成为了AI研究中的一个重要挑战。

1.2 研究现状

目前,AI领域已经开始关注终身学习的问题,并提出了一些初步的解决方案:

  1. 增量学习(Incremental Learning):允许模型在不完全重新训练的情况下学习新数据。
  2. 迁移学习(Transfer Learning):
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值