Python机器学习实战:解析机器学习模型的可解释性与透明度
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:机器学习模型,可解释性,透明度,全局解释器,局部解释器,特征重要性,SHAP值
1.背景介绍
1.1 问题的由来
随着大数据时代的到来,机器学习在各行各业的应用越来越广泛。然而,在许多关键决策过程中,如金融风控、医疗诊断、法律判决等领域,模型的预测结果往往缺乏足够的解释性,这引起了社会各界对机器学习模型可解释性和透明度的关注。为了提高公众信任并满足监管需求,研究如何使复杂的机器学习模型变得“可见”、“可理解”,成为了一个重要的议题。
1.2 研究现状
目前,研究人员已开发出多种方法用于提升机器学习模型的可解释性。这些方法可以大致分为两类:全局解释器和局部解释器。全局解释器试图从整体上理解模型的行为,如特征的重要性排序、模型决策规则的摘要等。局部解释器则专注于单个预测或一组相邻数据点,旨在揭示模型在特定情况下的决策依据。近年来,基于SHAP(SHapley Additive exPlanations)的方法因其理论基础扎实且实用性强而受到广泛关注。
1.3 研究意义
提高机器学习模型的可解释性和透明度不仅有助于增强公众的信任,还能够促进模型的合理应用和发展。它可以帮助开发者更好地理解和优化模型性能,同时为政策制定者、行业专家及最终用户提供更可靠、可信的决策支
机器学习可解释性实战

订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



