大语言模型在数据摘要中的应用与方法
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:数据摘要,大语言模型,自动文摘,信息抽取,NLP技术
1. 背景介绍
1.1 问题的由来
随着互联网和社交媒体的快速发展,海量的数据如潮水般涌现。这些数据包罗万象,涵盖了新闻报道、学术论文、社交媒体动态等多种形式。然而,在如此庞大的信息海洋中筛选出有价值的信息并非易事。因此,数据摘要成为了一种有效的方法,用于快速理解和提取大量文本数据的核心要点,帮助用户节省时间并提高效率。
1.2 研究现状
当前,数据摘要技术主要分为两大类:基于规则的方法和基于机器学习/深度学习的方法。基于规则的方法依赖于特定的语法规则和模式匹配,虽然能够在一定程度上处理标准化文本,但对非标准或复杂文档的适应能力有限。相比之下,基于机器学习/深度学习的方法通过训练模型从大规模文本数据中学习特征,能够生成更准确且具有可读性的摘要。近年来,随着自然语言处理(NLP)技术的进步,尤其是大型语言模型的兴起,数据摘要的应用得到了显著增强。