流形学习 (Manifold Learning) 原理与代码实例讲解
1. 背景介绍
1.1 问题的由来
在数据科学和机器学习领域,我们经常遇到高维数据集,这些数据通常以向量形式存在,拥有数十乃至数千个维度。直观上,这些高维数据在数学上可以被视为一个高维空间中的点。然而,许多真实世界的问题,比如图像识别、自然语言处理或者生物信息学,这些数据实际上并不完全分布在高维空间中,而是沿着一个或几个潜在的低维结构“折叠”或“弯曲”,我们称这样的结构为“流形”。
想象一下,如果你有一张照片,这张照片可以被看作是由无数像素组成的高维数据点。但是,实际上,这张照片代表的是一个二维物体的表面,即使在高维空间中,它只占用了二维空间。这就是流形学习的目的——找到隐藏在高维数据中的低维结构,以便更好地理解数据和进行有效的数据分析或机器学习任务。
1.2 研究现状
流形学习是一个活跃的研究领域,它已经发展出了一系列不同的算法和技术。其中,最著名的包括主成分分析(PCA)、局部线性嵌入(LLE)、拉普拉斯特征映射(Laplacian Eigenmaps)、ISOMAP、和T-distributed Sto