大语言模型原理与工程实践:有监督微调数据的格式
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
随着深度学习技术的飞速发展,大语言模型(LLMs)在自然语言处理(NLP)领域取得了显著的成果。然而,LLMs的应用通常需要大量的标注数据来进行微调。如何高效地组织和格式化这些数据,对于LLMs的性能至关重要。
1.2 研究现状
目前,已有许多研究关注于大语言模型的训练和微调,但针对数据格式的探讨相对较少。一些研究提出了不同的数据格式,如序列化JSON、表格化CSV等,但这些格式在可扩展性、易用性和性能方面存在一定局限性。
1.3 研究意义
本文旨在探讨大语言模型有监督微调数据的格式,提出一种高效、可扩展、易用的数据格式,并分析其性能优势。这对于提高LLMs的训练效率和性能具有重要意义。
1.4 本文结构
本文首先介绍大语言模型的基本原理和工程实践,然后详细阐述有监督微调数据的格式,并分析其优势和不足。接着,提出一种新的数据格式,并对比其性能。最后,探讨大语言模型在实际应用中的未来发展方向。
2. 核心概念与联系
2.1 大语言模型
大语言模型(LLMs)