1. 背景介绍
1.1 机器学习的挑战
机器学习近年来取得了巨大的成功,应用于各个领域,如图像识别、自然语言处理、推荐系统等。然而,构建高效的机器学习模型需要大量的专业知识和经验,包括:
- 数据预处理: 清洗、转换、特征工程等
- 模型选择: 选择合适的模型架构和超参数
- 模型训练: 调节参数、优化模型性能
- 模型评估: 验证模型的泛化能力
这些过程通常需要耗费大量的时间和精力,对于非专业人士来说更是难以驾驭。
1.2 AutoML的崛起
为了解决这些挑战,自动机器学习(AutoML)应运而生。AutoML旨在将机器学习过程自动化,降低门槛,让更多人能够利用机器学习技术解决实际问题。
AutoML的目标是:
- 提高效率: 自动化繁琐的任务,节省时间和精力
- 提升性能: 寻找更优的模型架构和超参数,提升模型性能
- 降低门槛: 让非专业人士也能轻松构建机器学习模型