大语言模型原理与工程实践:强化学习的目标
关键词:
强化学习、大语言模型、自然语言处理、机器学习、深度学习、智能体、环境、状态、动作、奖励、策略、价值函数、Q-learning、深度Q网络、深度确定性策略梯度、Transformer、预训练、微调、模型驱动、数据驱动、端到端学习、自我监督、探索与利用、模仿学习、多智能体系统、自然语言生成、对话系统、文本创作、游戏策略、推荐系统、决策支持、自动化编程、机器人控制、生物医学、金融、法律、教育
1. 背景介绍
1.1 问题的由来
随着深度学习技术的发展,尤其是预训练大语言模型的兴起,研究人员和工程师们开始探索如何利用这些模型在强化学习(RL)中发挥更大的作用。强化学习是机器学习的一个分支,主要研究智能体在特定环境下如何通过与环境互动来学习最优行为策略。在强化学习中,智能体根据其采取的动作获得即时反馈——奖励或惩罚,并根据这个反馈来调整自己的行为策略以达到长期目标。大语言模型因其强大的语言理解能力和生成能力,为强化学习带来了新的机遇,特别是在自然语言处理任务、对话系统、文本创作等领域展现出了潜力。
1.2 研究现状
当前,强化学习领域正在积极探索如何利用大语言模型的表征能力来提高智能体的学习效率和性能。例如,通过将大语言模型作为智能体的初始策略