图像分割 (Image Segmentation) 原理与代码实例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
图像分割(Image Segmentation)是计算机视觉领域中的一个基础而关键的问题。它的目的是将图像划分为若干个互不重叠的区域,每个区域内的像素在特征上具有相似性,而不同区域之间的像素特征则具有差异性。这一过程对于图像理解、目标检测、物体识别、医学图像分析等多个领域都具有重要意义。
1.2 研究现状
随着深度学习技术的快速发展,图像分割技术也取得了显著的进步。传统的图像分割方法主要包括基于阈值的分割、基于区域的分割、基于边缘的分割等。而深度学习技术,尤其是卷积神经网络(Convolutional Neural Networks, CNNs)的引入,使得图像分割的性能得到了极大的提升。
1.3 研究意义
图像分割技术的研究对于推动计算机视觉领域的发展具有重要意义。通过将图像分割成具有相似特征的区域,可以简化后续的图像处理和分析任务,提高算法的效率和准确性。