多模态大模型:技术原理与实战 工具和算法框架介绍
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:
多模态大模型,技术原理,实战,工具,算法框架,自然语言处理,计算机视觉,语音识别
1. 背景介绍
1.1 问题的由来
随着信息技术的飞速发展,数据呈现爆炸式增长,其中包含了文本、图像、语音等多种模态。如何有效地融合这些多模态信息,提取其内在关联,并用于智能应用,成为当前人工智能领域的研究热点。多模态大模型作为一种新兴的研究方向,旨在通过融合不同模态的数据,构建更加智能、全面的人工智能系统。
1.2 研究现状
近年来,多模态大模型取得了显著的进展,涌现出许多具有代表性的模型和算法。其中,基于深度学习的多模态融合方法,如多模态卷积神经网络(MMCNN)、多模态循环神经网络(MMRNN)和多模态Transformer(MMTransformer)等,在多个领域取得了优异的性能。
<