多模态大模型:技术原理与实战 工具和算法框架介绍

多模态大模型:技术原理与实战 工具和算法框架介绍

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

关键词:

多模态大模型,技术原理,实战,工具,算法框架,自然语言处理,计算机视觉,语音识别

1. 背景介绍

1.1 问题的由来

随着信息技术的飞速发展,数据呈现爆炸式增长,其中包含了文本、图像、语音等多种模态。如何有效地融合这些多模态信息,提取其内在关联,并用于智能应用,成为当前人工智能领域的研究热点。多模态大模型作为一种新兴的研究方向,旨在通过融合不同模态的数据,构建更加智能、全面的人工智能系统。

1.2 研究现状

近年来,多模态大模型取得了显著的进展,涌现出许多具有代表性的模型和算法。其中,基于深度学习的多模态融合方法,如多模态卷积神经网络(MMCNN)、多模态循环神经网络(MMRNN)和多模态Transformer(MMTransformer)等,在多个领域取得了优异的性能。

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值