文章标题
《电商平台中的强化学习:AI大模型的新应用》
关键词:强化学习、电商平台、AI大模型、应用场景、算法优化、实践案例
摘要:本文深入探讨了强化学习在电商平台中的应用,详细介绍了强化学习的基础概念、算法原理以及在商品推荐、购物车优化、库存管理和广告投放等关键领域的应用实践。通过具体案例分析和算法实现,探讨了强化学习大模型在电商平台中的构建、优化与部署策略,为电商企业提供了实用的技术参考。
强化学习基础
第1章:强化学习概述
1.1 强化学习的基本概念
强化学习(Reinforcement Learning,简称RL)是机器学习的一个重要分支,旨在通过智能体(agent)在与环境的交互中学习最优策略,以实现目标最大化。在强化学习中,智能体通过选择动作(action)并接收奖励(reward)来不断调整其行为,以优化长期累积奖励。这一过程可以看作是一个动态规划问题,其中智能体需要从多个可能的行为中选取最优动作。
强化学习的关键概念包括:
- 智能体(Agent):执行动