第一部分:背景与核心概念
1.1 问题背景
金融行业在当今社会占据着至关重要的地位,而社交媒体在金融信息传播中扮演了不可或缺的角色。社交媒体平台,如Twitter、Facebook和LinkedIn,已经成为投资者、分析师、金融机构和普通用户获取金融信息、分享观点和进行投资决策的重要渠道。然而,这些平台上产生的海量文本数据包含了大量情绪信息,如何有效地提取和利用这些情绪信息,成为了金融行业中的一个重要研究课题。
情绪传播现象在金融社交媒体中尤为明显。例如,一条关于某公司的负面评论可能会迅速引起其他用户的负面情绪,并导致负面情绪在社交媒体上传播开来。这种情绪传播可能会对公司的股价、市场信心等产生深远影响。因此,构建一个能够识别、分析和预测情绪传播的模型,对于金融市场的研究和投资决策具有重要意义。
近年来,自然语言处理(NLP)技术在情绪分析方面取得了显著进展。通过NLP技术,可以自动化地提取文本中的情绪信息,从而为情绪传播模型提供可靠的数据支持。NLP结合情绪分析,为金融社交媒体情绪传播研究提供了新的思路和方法。
1.2 核心概念
自然语言处理(NLP) 是人工智能的一个分支,旨在让计算机理解和处理人类自然语言。在情绪分析领域,NLP技术可以