引言
1.1 问题背景
人工智能(AI)和机器学习(ML)在过去几十年中得到了迅猛发展,深刻地改变了我们的生活和工作方式。特别是深度学习(Deep Learning)的兴起,使得语言模型(Language Model, LLM)在自然语言处理(Natural Language Processing, NLP)领域取得了显著突破。然而,随着LLM应用场景的扩展,其评测的可解释性成为一个亟待解决的问题。
1.1.1 人工智能与机器学习的发展
人工智能和机器学习的发展可以追溯到20世纪50年代。随着计算能力的提升和数据量的爆炸式增长,深度学习技术逐渐成熟。近年来,神经网络模型,特别是生成预训练变换模型(Generative Pre-trained Transformer Model, GPT)的涌现,极大地推动了自然语言处理和计算机视觉等领域的发展。
1.1.2 语言模型(LLM)的崛起
语言模型是机器学习中的一种重要模型,用于理解和生成人类语言。LLM通过大量的文本数据训练,能够生成流畅、符合语境的文本,应用于问答系统、机器翻译、文本摘要等多个场景。LLM的崛起不