LLM评测的可解释性增强:透明化评估过程

引言

1.1 问题背景

人工智能(AI)和机器学习(ML)在过去几十年中得到了迅猛发展,深刻地改变了我们的生活和工作方式。特别是深度学习(Deep Learning)的兴起,使得语言模型(Language Model, LLM)在自然语言处理(Natural Language Processing, NLP)领域取得了显著突破。然而,随着LLM应用场景的扩展,其评测的可解释性成为一个亟待解决的问题。

1.1.1 人工智能与机器学习的发展

人工智能和机器学习的发展可以追溯到20世纪50年代。随着计算能力的提升和数据量的爆炸式增长,深度学习技术逐渐成熟。近年来,神经网络模型,特别是生成预训练变换模型(Generative Pre-trained Transformer Model, GPT)的涌现,极大地推动了自然语言处理和计算机视觉等领域的发展。

1.1.2 语言模型(LLM)的崛起

语言模型是机器学习中的一种重要模型,用于理解和生成人类语言。LLM通过大量的文本数据训练,能够生成流畅、符合语境的文本,应用于问答系统、机器翻译、文本摘要等多个场景。LLM的崛起不

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值