AIGC领域下AIGC视频的个性化推荐技术
关键词:AIGC视频、个性化推荐、用户建模、多模态融合、生成式模型、推荐算法、冷启动问题
摘要:本文深入探讨AIGC(人工智能生成内容)视频领域的个性化推荐技术,解析其核心原理、算法实现与工程落地方案。通过构建融合用户行为、内容特征与生成式模型的推荐架构,结合多模态数据处理与动态特征更新技术,解决AIGC视频的高时效性、多样性与冷启动挑战。文中包含完整的算法推导、Python代码实现及实战案例,适合推荐系统工程师、AIGC开发者及数据科学家阅读。
1. 背景介绍
1.1 目的和范围
随着AIGC技术爆发,抖音、快手、YouTube Shorts等平台每天生成数十亿条AI生成视频(如AI动画、虚拟人直播、智能剪辑视频)。传统推荐系统在处理这类动态生成、内容形态多变的视频时面临三大挑战:
- 内容冷启动:新生成视频缺乏用户交互数据
- 模态复杂性:融合文本、视觉、音频的多模态内容特征处理
- 实时性要求:需分钟级响应AI生成内容的推荐需求