自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

  • 博客(126692)
  • 资源 (6)
  • 收藏
  • 关注

原创 5万字详解《使用 LangGraph, FastAPI, MCP and Docker 构建通用 AI 智能体:自主系统原理与应用实战》

欢迎阅读《使用 LangGraph, FastAPI, MCP and Docker 构建通用 AI 智能体:自主系统原理与应用实战》。这是一本面向初学者的完整指南,旨在教你如何从零开始构建、部署和维护强大的 AI 智能体系统。AI 智能体(AI Agent)是一种先进的 AI 系统,旨在根据高级目标自主进行推理,制定计划并执行行动。相比传统的 Chatbot、预测模型或分类器,Agentic AI 系统能够自主决策、动态学习,并在复杂任务中持续行动[1†]。这类系统由多个"Agent"(代理)构成,彼此分

2026-02-11 20:22:36 95 1

原创 OpenClaw 快速上手: 从0到1 完整教程 (Clawdbot)—— 2026 革命性的开源个人AI智能体(Personal AI Agent)

/ 示例:创建一个简单的文件统计技能description: '提供文件系统统计信息',return {遵循统一的接口规范处理错误和异常情况提供清晰的文档支持参数验证遵循模块化设计原则编写完整的单元测试实现错误处理和恢复机制提供清晰的文档和示例考虑向后兼容性OpenClaw代表了个人AI助手发展的一个重要里程碑。它将AI技术从云端带到本地,从被动响应升级到主动执行,从单一功能扩展到全方位服务。

2026-02-02 02:07:26 1041

原创 编程之外:IT软技能完全指南

学生们在我们开始讨论范围定义时常常翻白眼。“我们不能直接开始编码吗?”他们问道。但多年的教学经验表明:那些花时间把范围定义得非常清晰的团队,最终能够庆祝成功,而不是为了修正根本的误解而熬夜。定义范围意味着三件事:你正在构建的东西(目标)、你正在交付的东西(实际内容),以及你绝对不做的事情(边界)。最后这部分?至关重要,而且常常被忽略。捕捉需求项目管理不仅仅是一系列工具和技术——它是一种思考复杂工作的方式,这种方式能帮助你持续交付成果。

2026-01-22 03:57:30 227

原创 【FreeManus】生产级 Agentic AI 智能体式系统导论 Introduction to Production-Grade Agentic AI Systems

从形式上定义,智能体式AI系统是一种计算实体,它在特定环境中运行,感知环境状态,并通过执行动作实现预设目标。Astot→atst1Ast​ot​→at​st1​Astot→atst1Ast​ot​→at​st1​AAA= 智能体函数sts_tst​= 时间ttt时的当前系统状态oto_tot​= 时间ttt时从环境中获取的观测信息ata_tat​= 智能体在时间ttt。

2026-01-12 01:48:18 741

原创 【FreeManus】AI Agent 架构师的30项必备修炼 / 光子AI - Photon.ai

《AI Agent架构师的30项必备修炼》为AI Agent开发者提供系统化的成长路径,涵盖从基础理论到前沿技术的完整知识体系。全书分为基础筑基、核心架构、工程落地和前沿进阶四大模块,包含30项核心技能修炼,如ReAct架构设计、多Agent协作系统、具身智能实现等。通过理论讲解与代码实践相结合(如马尔可夫决策过程、极简ReAct Agent实现等),帮助读者掌握AI Agent系统设计的关键技术。该书适合不同阶段的开发者:入门者可系统学习基础理论,进阶者聚焦架构设计,企业架构师侧重工程落地,研究者探索前沿

2026-01-12 01:33:30 622

原创 【光子AI 2026 企业级 Agent 架构指南】别再把 Skill 当 Tool:Agent Skills × MCP 企业级落地全指南(最新定义澄清 + 场景大全 + 选型决策树+安全工程清单)

摘要: 2026年企业级AI架构迎来两大核心标准——Agent Skills与MCP(Model Context Protocol),分别解决流程标准化与系统集成难题。Agent Skills通过“文件夹化能力包”(SOP+脚本+模板)固化专家流程,确保输出一致性;MCP则以类USB-C的协议统一外部系统接入,降低集成成本。两者差异显著:Skills专注程序性知识(如财报生成),MCP侧重动态连接(如跨平台数据调用)。实际场景中,复杂需求(如智能客服)需组合使用——MCP为骨架提供连接能力,Skills为大

2026-01-08 00:48:55 836

原创 【光子AI】一切皆是映射:映射即计算、函数、关系、变换、运动、流(下)

在数学和物理学中,变换通常指将一个数学对象或物理系统转换为另一个对象或系统的操作。变换是映射在动态语境下的自然延伸。形式化定义设XXX和YYY是两个集合(或空间),一个变换TTT是从XXX到YYYTX→YTX→Y可迭代性TTT可以反复应用于自身,即TnT∘T∘⋯∘TTnT∘T∘⋯∘T(n次)可逆性可能:可能存在逆变换T−1T^{-1}T−1使得T−1∘TIT−1∘TI(恒等变换)参数化。

2026-01-03 14:19:57 975

原创 【光子AI】一切皆是映射:映射即计算、函数、关系、变换、运动、流(上)

在信息爆炸的时代,我们被各种复杂的概念、系统和现象所包围。从计算机程序的执行,到自然界的物理规律;从社会关系的网络,到个体思维的运转,世界似乎由无数看似独立却又相互关联的碎片构成。我们是否能够找到一个统一而简洁的视角,来理解这纷繁复杂的一切?这正是本书试图回答的核心问题。本书的缘起,源于一个简单却深刻的观察:无论是数学中的函数、计算机科学中的计算、物理学中的运动,还是社会学中的关系,其底层都蕴含着一种共通的结构——映射。映射,即从一个集合到另一个集合的对应关系,它不仅是抽象的数学工具,更是理解世界运作方式的

2026-01-03 14:18:39 1213

原创 【光子 AI】在实际业务中做好 AI Agent的关键是什么?

在实际业务中实现高效AI Agent的关键在于工程化与业务化的系统融合,而非单纯追求模型规模或概念创新。核心要点包括:精准定义业务级问题,确保任务可拆解、可判定;强化上下文工程与确定性工具调用;建立完善的评价体系与失败路径设计;重构组织流程以适应Agent运作;优先开发窄领域Agent再扩展为网络。最终目标是实现问题真实、边界清晰、结果可控、价值可量化的AI Agent解决方案。

2025-12-24 11:09:37 216 6

原创 【光子 AI】设计一套可执行、可复制、可放大的一人公司赚钱系统

AI 赚钱系统

2025-12-21 13:56:09 179

原创 【光子 AI 】整理 AI 人工智能发展历史上里程碑事件的关键论文清单和下载地址

本文整理了人工智能发展史上15篇具有里程碑意义的关键论文,涵盖1943年至2020年间的重要突破。清单按时间顺序排列,每篇论文包含:发表年份、标题、主要作者、历史意义说明以及可直接下载的PDF链接。这些论文代表了AI发展的关键节点,从早期的神经网络理论奠基(McCulloch&Pitts,1943)、感知机模型(Rosenblatt,1958)、反向传播算法(Rumelhart等,1986),到深度学习的复兴(Hinton等,2006)、AlexNet突破(2012),以及近年来的Transform

2025-12-18 13:05:02 777

原创 【光子 AI 】《Python 编程极简教程》 面向零基础到初级读者的实用入门手册

《Python编程极简教程》摘要(140字) 本教程为零基础学习者提供Python快速入门指南。首先介绍Python作为简单通用的解释型语言,适合数据分析、AI、Web开发等领域。详细讲解开发环境搭建(Windows/macOS)、基础语法(变量/数据类型/流程控制)、函数使用及模块导入。通过"Hello World"示例引导读者编写首个程序,并提供计算器、文本统计等实战案例。强调实践导向,建议学习者多写代码解决问题,最后给出面向对象编程、标准库等进阶方向。全篇突出Python易学实用的

2025-12-18 12:53:04 241

原创 【光子 AI 】AI 大模型 Transformer 架构的完整训练计算过程:一个可交互的可视化动画演示

本文介绍了一个Transformer架构训练过程的可视化动画演示系统。该系统采用交互式设计,通过17个步骤完整展示大模型训练流程,包括输入处理、注意力机制、前馈网络、损失计算和参数更新等关键环节。可视化界面包含主视图区、矩阵面板和控制面板,使用不同颜色编码区分功能模块(如蓝色表示输入数据、绿色表示注意力机制)。系统提供播放控制、单步执行和速度调节功能,支持开发者直观理解Transformer模型的训练动态。HTML源代码展示了响应式UI设计,采用现代CSS技术实现美观的渐变效果和交互元素。

2025-12-18 03:25:13 167

原创 【光子 AI 】LangGraph 底层图计算算法原理详解:Pregel 图计算算法动画演示

Pregel 图计算算法动画演示:最短路径算法 摘要:本文展示了一个基于网页的Pregel图计算算法动画演示,专注于最短路径算法的可视化实现。该演示采用SVG技术构建交互式图形界面,通过动画效果直观展示Pregel计算模型的核心概念,包括顶点状态变化(活跃/非活跃)、消息传递机制和超步同步屏障。界面设计采用深色背景与渐变色彩,突出算法运行时的动态效果,如顶点状态高亮、消息传递路径以及同步屏障脉冲动画。技术实现上结合了HTML5、CSS3动画和JavaScript,为学习者提供理解Pregel分布式图计算模型

2025-12-18 02:28:37 98

原创 【光子 AI 】LangGraph 计算图原理:向小学生讲清楚 Pregel 图计算算法原理与本质,并给出极简源代码实现【分别给出 Java、Rust、Go 和 Python 语言版本】

Pregel图计算算法通过"传声筒游戏"生动解释了其原理:将计算任务分解为多个点(顶点)之间的消息传递,每个顶点独立处理收到的信息并更新状态,通过多轮迭代最终达成全局目标。文章提供了极简实现代码(Python、Java、Rust、Go),以寻找图中最大值为例,展示了顶点如何接收消息、比较数值并传播结果的过程。这种分布式计算模型特别适合处理大规模图数据,每个顶点只需关注局部信息即可协同完成全局计算。

2025-12-18 01:30:46 102

原创 【光子 AI 】LangGraph:Graph = 有向有环图 + 状态机实现原理详解:数据结构模型与核心算法代码实现逻辑解析

LangGraph核心原理解析:基于Pregel模型的消息传递图,结合有向有环图和状态机特性。关键实现包括:1) 共享状态机制(TypedDict/Pydantic模型)配合Reducer逻辑实现状态更新;2) 图拓扑结构通过邻接表维护节点和条件边;3) 检查点机制支持状态持久化和恢复。运行时采用Pregel循环算法,通过超级步迭代执行节点函数、应用状态归约、条件路由下一批节点,同时支持人工中断和异步并行处理。该架构使LangGraph具备循环执行、条件跳转等DAG无法实现的动态流程控制能力。

2025-12-17 02:51:36 849 5

原创 在 MultiAgent 系统中,多个 Agent 之间是怎样协作通信和共享上下文的?给出详细的实现原理和框架案例深度解析(例如 LangChain)

多Agent系统中的协作通信与上下文共享机制解析 摘要: 多Agent系统的协作通信主要通过三种架构模式实现:1)集中式协调(Orchestrator模式),2)点对点消息传递,3)黑板/共享内存机制。上下文共享则采用消息链式传递、结构化共享状态对象或外部记忆存储三种方式。以LangGraph为例,它采用有状态图(StateGraph)模型,每个Agent作为节点对共享状态进行读写,通过节点连接定义协作路径,实现高效上下文共享。典型实现包含定义State类型、构建Agent节点、设置条件边等步骤,兼顾灵活性

2025-12-10 23:42:07 940 1

原创 【Java 面试宝典】30 道 AI 大模型与Agent 算法工程研发与后端工程开发技术面试题宝典(精选面试题和面试必过的答案完整详细解析)

考察点:生成范式、模型家族。自回归 LM:建模 p(x₁,…,x_T) = ∏ p(x_t | x_<t)逐 token 预测下一个词,典型如 GPT。Encoder 将源序列编码成隐表示Decoder 条件生成目标序列:p(y | x)区别:自回归 LM:单序列建模,适合续写、对话、补全。Seq2Seq:明确「输入→输出」映射,适合翻译、摘要等有「源-目标」对。现代很多任务通过「指令 + 上下文」把任务转成纯自回归生成,不再需要显式 Encoder。考察点。

2025-12-10 16:38:03 1047 5

原创 【Java 面试宝典】30 道 Java 面试题宝典(精选面试题和面试必过的答案完整详细解析)

下面给你一份「30 道 Java 面试题宝典」,偏向通用 Java 开发/后端岗位,题目覆盖:每题包含:你可以当作“背诵提纲”来用,真正面试时再展开举例即可。考察点:基本功、OOP 理解。必会:加分:考察点:OO 设计、Java 特性。必会:抽象类()接口(,Java 8+)使用场景:加分:考察点:参数传递机制,常见坑。必会:加分:考察点:对象比较、集合 key、基础扎实度。必会:重写 时:加分:考察点:字符串、性能、线程安全。必会:加分:考察点:异常体系、编码习惯。必会:加分:考察点:集合底层、时间复杂

2025-12-10 16:37:34 1015 1

原创 【深度解析】AI Agent 上下文工程(Context Engineering)的核心价值!在电商客服场景中,如何构建有效的上下文窗口(如用户历史订单、咨询记录)以提升 Agent的回答质量?

深度解析上下文工程在电商客服中的应用 本文探讨了上下文工程在优化电商客服Agent回答质量中的关键作用。随着大模型窗口扩展,上下文对齐成为落地瓶颈。文章提出一套系统方法论: 核心问题:客服Agent因上下文缺失导致回答不准确,表现为重复追问、答非所问等,严重影响效率和用户体验。 解决方案: 四阶九步构建法:从上下文建模到投放,涵盖实体设计、多路召回、动态排序和记忆压缩。 开源框架Context4CS:集成Python、Milvus等技术,支持多租户和多模态数据。 关键价值:提升上下文召回率、信噪比和利用率,

2025-11-08 04:11:51 683 1

原创 万字详解:程序员在研发项目需求中与协作方高质量沟通指南——沟通,是程序员最值得投资的软技能

本文系统性地介绍了程序员如何在研发项目中与协作方进行高质量沟通。文章首先强调沟通是程序员职业成长的关键技能,提出从"代码实现者"到"问题解决者"的心态转变。然后从五个核心原则展开:转变角色定位、换位思考、主动沟通、聚焦共同目标和追求共识。 在方法论部分,文章详细拆解了需求沟通的四个阶段: 需求启动与澄清阶段:强调会前准备、高效提问和会后跟进; 需求分析与拆解阶段:包括MVP思维、边缘案例识别和用户故事定义; 技术方案设计与评审阶段:涵盖技术翻译、风险评估和多方案提供;

2025-11-06 01:06:30 1634 3

原创 万字长文:深入解析“上下文工程”(Context Engineering)——驾驭百万Token时代的AI性能缰绳:五种典型的“上下文失效”模式与解决方案

信息过载:上下文超出模型的“有效处理容量”,关键信息被冗余、错误内容掩盖;注意力稀释:模型的注意力资源无法在长上下文中均匀分配,导致关键信息被忽略;一致性缺失:模型缺乏对上下文信息的“校验、冲突处理”机制,无法保证输入的有效性与逻辑性。Context Engineering不是“对抗”大模型的上下文,而是“驾驭”它。在大模型的上下文窗口持续扩容的今天,单纯追求“更长的窗口”已无法解决实际问题——真正的竞争力,在于如何让大模型在海量信息中精准定位核心、规避风险、高效输出。

2025-10-25 12:58:12 3671

原创 万字详解:36岁中国程序员未来三十年人生规划2025-2055

中国程序员36岁后的30年人生规划 36岁的中国程序员正处于职业与人生的关键转折点。面对技术迭代、AI崛起和行业变革,未来30年规划应分三阶段推进: 36-40岁(转型期):选择技术深耕或管理转型,聚焦AI、云计算等新兴领域,突破职业瓶颈,提升软技能。 41-50岁(黄金期):发展多元化职业路径,打造个人品牌,建立副业与投资组合,应对职业风险。 51-65岁(价值期):转向咨询、教育等柔性工作,参与公益活动,实现经验传承与人生价值。规划需兼顾技术敏感度、财务稳健和生活平衡,在快速变化的行业中保持持续竞争力与

2025-07-07 01:23:20 6258 14

原创 《Agentic AI 实战》第7章 DeepResearcher:基于MCP和browser-use实现深度研究Agent

DeepResearcher:基于MCP与浏览器自动化的深度研究Agent DeepResearcher是一个结合MCP(Model Context Protocol)和browser-use技术的智能研究Agent系统,实现了网络搜索、学术论文分析、网页内容提取与结构化报告生成的全流程自动化。系统采用分布式微服务架构,包含研究服务器、客户端服务器、LangGraph工作流和Streamlit前端等核心组件。 技术亮点包括: 通过MCP协议标准化连接LLM与外部工具 使用browser-use技术进行深度网

2025-06-23 23:10:15 1286

原创 程序员职业生涯系列:关于技术能力的思考与总结

引子儒、释(佛)、道三家思想:释(佛家):处理好人与心的关系,我们要战胜自己;儒(儒家):处理好人与人的关系,我们要团结好他人;道(道家):处理好人与自然的关系,我们应该顺势而为。明人陆绍珩《醉古堂剑扫》自叙有云:一愿识尽人间好人,二愿读尽世间好书,三愿看尽世间好山水。或曰:静则安能,但身到处,莫放过耳。旨哉言乎!余性懒,逢世一切炎热争逐之场,了不关情。惟是高山流水,任意所如,遇翠丛紫莽,竹林芳径......

2022-08-29 10:00:40 135963 241

原创 数据价值评估模型训练:AI应用架构师详解智能体如何用少量数据实现高效评估

项目名称:DataValueAgent(数据价值评估智能体原型)项目目标:实现一个能够自动接入模拟数据源,通过少量专家标注,持续学习和评估数据价值的演示系统。技术栈后端AI框架:PyTorch(用于实现MAML模型)数据与元数据管理:SQLite(模拟数据目录)任务队列:Celery(用于异步执行耗时的价值探测实验)前端(可选,用于演示):Streamlit。

2026-02-23 02:08:31 52

原创 超神助力!AI应用架构师助力AI系统性能监控平台飞跃之路

在这个AI大爆发的时代,我们每天都在享受人工智能带来的便利——打开手机就能获得精准的内容推荐,购物时AI导购为我们挑选心仪商品,甚至自动驾驶汽车也开始在道路上行驶。但你是否想过,当你语音唤醒智能助手却迟迟得不到回应时,背后可能隐藏着AI系统的性能危机?当一个AI推荐系统因响应延迟增加0.5秒,可能导致电商平台损失数百万的日销售额;当自动驾驶汽车的感知系统出现100毫秒的推理延迟,可能酿成无法挽回的安全事故。AI系统性能问题已成为企业数字化转型的"阿喀琉斯之踵"。

2026-02-23 01:11:33 48

原创 AI应用架构师必读:企业级AI驱动员工培训系统架构设计5大核心原则(附实战案例)

核心概念:企业培训数字化转型是指利用数字技术(特别是AI和机器学习)重构传统培训模式,实现个性化、智能化、数据驱动的员工学习与发展体系。问题背景在当今快速变化的商业环境中,企业面临着前所未有的人才挑战。根据德勤《2023年全球人力资本趋势报告》,92%的企业认为其员工技能差距正在扩大或保持稳定,而85%的企业预计到2025年,岗位将出现显著变化。标准化内容与个性化需求的矛盾:传统培训通常采用"一刀切"的标准化课程,无法满足不同岗位、不同层级、不同学习能力员工的个性化需求。培训效果与业务价值脱节。

2026-02-22 23:19:36 70

原创 《剖析企业AI研发标准,AI应用架构师的深度思考》

想象一下:如果100个厨师在同一个厨房做菜,没有统一的食材采购标准(有的用过期肉,有的用新鲜肉)、没有统一的烹饪流程(有的炒1分钟,有的炒10分钟)、没有食品安全检查(不管生熟都端上桌),最后会做出什么?大概率是一堆无法入口的"黑暗料理"。企业AI研发也是如此。当数据科学家、工程师、产品经理各自为战,没有统一的"游戏规则"时,AI项目就会陷入"七国之乱":数据科学家抱怨"工程团队不懂模型调优",工程师吐槽"数据科学家给的模型像黑盒子,没法部署",产品经理头疼"上线半年的模型性能掉了一半,没人知道为什么"

2026-02-22 22:28:25 99

原创 AI在法律尽职调查中的应用与架构实现

法律尽职调查是指投资方(或收购方)委托律师团队,对目标公司(Target)的法律状况进行系统性审查,以评估潜在法律风险、确认交易标的合法性的过程。风险识别:发现可能影响交易的法律瑕疵(如未决诉讼、违规经营、合同违约风险);信息验证:核实目标公司披露信息的真实性(如股权结构、资产权属、财务数据);价值评估:量化风险对交易定价的影响(如某未决诉讼可能导致的赔偿金额)。

2026-02-22 21:32:12 73

原创 设计一个电商平台的购物车系统。

想象一下这个场景:周五晚上,你正准备为即将到来的周末派对购买一些零食和饮料。你打开了常用的电商App,精心挑选了15种商品,比较了价格,查看了评价,甚至为了凑满减又添加了3件商品。当你满意地点击"去结算"按钮时,屏幕上却弹出一个令人崩溃的提示:“购物车为空,请先添加商品”。你愣住了,明明几分钟前还看到购物车里满满当当的商品。你返回购物车页面,果然空空如也。那一刻的沮丧和愤怒,恐怕每个网购爱好者都或多或少经历过。这个看似小小的购物车功能,实际上承载着电商平台与用户之间的重要交互。

2026-02-22 20:30:50 73

原创 AI应用架构师实战:企业AI效能度量框架的案例拆解

在AI驱动业务创新的时代,企业面临的最大挑战已从"能否实现AI"转变为"如何有效度量AI价值"。本文作为AI应用架构师的实战指南,系统构建了企业AI效能度量的完整知识体系,从理论框架到落地实践,深度剖析了效能度量的核心要素与实施路径。通过解构谷歌、微软、平安科技等6个行业标杆案例,本文详细阐述了如何构建适配不同企业规模与行业特性的效能度量框架,提供了包含32个核心指标的量化评估体系、12套实施工具模板以及7个关键成功因素。

2026-02-22 19:29:28 120

原创 传统企业算法市场建设:AI应用架构师的5个启动步骤

本文将以AI应用架构师的视角,系统拆解传统企业算法市场建设的5个关键启动步骤,从需求调研到技术落地再到运营闭环,提供可落地的方法论、工具选型与实战案例。我们不会空谈理论,而是聚焦"如何一步步把事做成",每个步骤都包含具体动作、决策框架与避坑指南。

2026-02-22 02:26:22 353

原创 智能预测系统架构设计:AI应用架构师的进阶手册书

许多团队在初次尝试AI项目时,容易陷入“模型中心论”的陷阱。他们投入90%的精力进行数据清洗、特征工程和模型调参,期望得到一个高准确率的“神奇模型”,然后简单地将模型封装成一个API便认为大功告成。结果往往是:模型在测试集上表现优异,一旦上线,预测效果却急剧下降,系统不堪重负,迭代更新困难重重,最终项目以失败告终。问题的根源在于,一个成功的预测系统是一个完整的软件工程产品,而不仅仅是一个算法实验。数据链路复杂性。

2026-02-22 01:30:06 235

原创 企业级AI Agent平台需求分析&PRD

本项目旨在打造一个面向企业级的AI Agent自动化智能体开发和应用平台,通过将企业大部分工作交由机器完成,构建一个以AI为主导的企业级运营系统。系统核心目标是实现企业运营的智能化、自动化和自我迭代。打造一套以AI为主导的企业级运营系统,将企业中大部分工作交由机器完成,人仅承担决策和物理执行核心工作,构建兼具统一性、自我迭代性,且能让个体在框架内发挥个性的企业运营体系,同时基于系统实现结果导向的按劳分配,优化企业分配机制。专业可靠:界面设计体现企业级产品的专业性和可靠性数据驱动。

2026-02-22 00:29:33 59

原创 讲一下CORS的原理。

想象一下,你正在家里()用电脑看视频,突然想访问邻居家()的Wi-Fi下载文件——这时候邻居家的路由器(浏览器)会问:"你是谁?我认识你吗?"如果不认识,就会拒绝你的请求。在Web世界里,这种"邻居家路由器"的规则就是同源策略,而允许特定"邻居"访问的规则就是CORS。解释为什么会有CORS(解决"为什么需要它"的问题)剖析CORS的工作原理(解决"它是怎么工作的"问题)提供实战代码示例(解决"怎么用它"的问题)总结常见问题和最佳实践(解决"怎么用好它"的问题)

2026-02-22 00:28:43 185

原创 企业级AI Agent平台系统架构&业务流程图设计

单一职责:每个微服务负责一个明确的业务领域松耦合:服务间通过API或消息队列通信,减少直接依赖独立部署:每个服务可独立部署和扩展技术多样性:不同服务可使用最适合的技术栈AI原生架构:专门为AI Agent系统设计的微服务架构混合通信模式:同步REST API + 异步消息队列 + 事件驱动智能编排引擎:基于LangChain/LangGraph的智能工作流编排多租户隔离:完善的多租户数据隔离和资源管理。

2026-02-22 00:20:56 34

原创 企业级AI Agent平台系统领域模型设计

1.2.2 上下文映射关系2. 核心领域模型设计2.1 租户管理上下文领域模型2.1.1 核心聚合设计租户聚合 (Tenant Aggregate):用户实体 (User Entity):角色值对象 (Role Value Object):2.1.2 值对象设计租户配置值对象 (TenantConfig Value Object):租户配额值对象 (TenantQuota Value Object):2.1.3 领域服务设计租户管理服务 (TenantManagementServic

2026-02-21 23:45:33 7

原创 AI应用架构师避坑指南:智能商业洞察平台建设中90%的人会犯的7个错误

业务语义层(Business Semantic Layer, BSL)是企业对数据的“统一语言”——比如“月销售额”的定义是“含税收入-退货金额”,“活跃用户”的定义是“当月登录≥3次”。它的作用是消除不同部门对同一指标的理解偏差。认为“数据字典”就是“语义层”——把指标定义写在Excel里,却没同步到平台的技术实现中。洞察闭环分析得出“用户流失是因为套餐性价比低”;执行“推送套餐升级优惠”的动作;反馈“优惠的响应率是20%,流失率下降了10%”;

2026-02-21 23:27:21 291

原创 虚拟团队成员‘隐性离职’?AI应用架构师的AI驱动状态预警方案

想象一下,你是一家软件公司的研发总监,管理着5个分布在不同城市的虚拟开发团队。最近你发现,上海团队的迭代速度慢了下来,代码质量也出现了波动,但团队成员每天的工时记录都显示正常,开会时大家也都表示"没问题"。直到三个月后,核心程序员小李突然提出离职,你才从离职面谈中得知,他其实在半年前就对项目方向产生了质疑,只是远程沟通中从未表露——这就是典型的"隐性离职"带来的代价。本方案的核心目的。

2026-02-21 22:31:06 333

计算机程序的构造和解释SICP核心内容思想.pptx

计算机程序的构造和解释SICP核心内容思想.pptx

2025-05-27

一切皆是映射跨学科视角下的认知范式

一切皆是映射跨学科视角下的认知范式

2025-05-27

AI创业实战指南2025年趋势洞察与实战案例.pptx

AI创业实战指南2025年趋势洞察与实战案例.pptx

2025-05-05

聪明的投资者本杰明格雷厄姆价值投资思想与最佳实践.pptx

聪明的投资者本杰明格雷厄姆价值投资思想与最佳实践.pptx

2025-05-05

互联网大厂裁员背后的经济规律与增长天花板.mp4

互联网大厂裁员背后的经济规律与增长天花板.mp4

2025-05-05

程序员修炼之道从小工到专家.pptx

程序员修炼之道从小工到专家.pptx

2025-05-05

《Kotlin项目实战开发》第3章+类型系统与可空类型

《Kotlin项目实战开发》 第3章 类型系统与可空类型 跟Java、C和C ++ 一样, Kotlin也是“静态类型编程语言”。 通常,编程语言中的类型系统中定义了  如何将数值和表达式归为不同的类型  如何操作这些类型  这些类型之间如何互相作用 我们在编程语言中使用类型的目的是为了让编译器能够确定类型所关联的对象需要分配多少空间。 在每一个编程语言中,都有一个特定的类型系统。静态类型在编译时期时,就能可靠地发现类型错误。因此通常能增进最终程序的可靠性。 类型系统在各种语言之间有非常大的不同,主要的差异存在于编译时期的语法,以及运行时期的操作实现方式。 本章我们简单介绍一下Kotlin的类型系统。

2017-09-30

四大常用限流算法原理详解:计数器固定窗口、计数器滑动窗口、漏桶、令牌桶算法.pdf

四大常用限流算法原理详解:计数器固定窗口、计数器滑动窗口、漏桶、令牌桶算法.pdf

2021-05-28

ClickHouse 高性能、可扩展和低成本的OLAP数据库 陈光剑 20230912

ClickHouse 设计哲学 具体问题具体分析 use good algorithms in a good context; 深入细节 dig into details; 度量指标 measure everything; 贴近生产环境 be close to production; 基准测试 do benchmarks, more of them; 不断试验、实践never stop experimenting; 大规模测试 test at scale; 大胆创新 do weird stuff; have fun! It is a database: A database has both a storage engine and a query engine. ClickHouse can efficiently ingest data from various sources and its query engine provides low-latency query responses. It is an OLAP database: An On-Line Analytic

2023-09-14

Will AI Fix Work? 工作节奏超过了我们的跟上能力 人工智能有望创造一种全新的工作方式

The pace of work is outpacing our ability to keep up. AI is poised to create a whole new way of working. 工作节奏超过了我们的跟上能力。人工智能有望创造一种全新的工作方式。 微软工作趋势指数年度报告( Work Trend Index Annual Report ) Key findings: The data points to three urgent insights business leaders must know now as they look to quickly and responsibly adopt AI. 1. Digital debt is costing us innovation: 64% of people have struggled with finding time and energy to get their work done, and those workers are 3.5x more likely to say they

2023-05-17

THE AI INDEX REPORT 人工智能指数报告 Measuring trends in Artificial Inte

THE AI INDEX REPORT 人工智能指数报告 Measuring trends in Artificial Intelligence 衡量人工智能的趋势 TOP TAKEAWAYS 最重要的要点 Industry races ahead of academia. 工业界领先于学术界。 Until 2014, most significant machine learning models were released by academia. Since then, industry has taken over. In 2022, there were 32 significant industry-produced machine learning models compared to just three produced by academia. Building state-of-the-art AI systems increasingly requires large amounts of data, compute, and money, resources

2023-04-06

An introduction to functional programming through lambda calculus.PDF.zip

Author: Michaelson, Greg Functional programming is rooted in lambda calculus, which constitutes the world's smallest programming language. This well-respected text offers an accessible introduction to functional programming concepts and techniques for students of mathematics and computer science. The treatment is as nontechnical as possible, and it assumes no prior knowledge of mathematics or functional programming. Cogent examples illuminate the central ideas, and numerous exercises appear throughout the text, offering reinforcement of key concepts. All problems feature complete solutions.

2019-09-22

Principles of programming languages by Gilles Dowek (auth.) (z-lib.org).pdf

Principles of programming languages by Gilles Dowek (auth.) (z-lib.org).pdf

2021-04-28

Kotlin Coroutines by Tutorials (1st Edition)

Kotlin Coroutines by Tutorials (1st Edition)

2021-04-28

A Brief History of Artificial Intelligence

A Brief History of Artificial Intelligence What It Is, Where We Are, and Where We Are Going by Michael Wooldridge (z-lib.org).pdf

2021-04-28

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除