11300 Spreading the Wealth


uva 對於這個題目一開始完全沒有思路,看了題解才恍然大悟原來可以這麼巧妙的,數學真是美妙~
由於問題給出的條件可以知道每個人最終持有的金幣數量: M = sum(coin[i])/n.
對於每個人可以傳遞的方案只有兩種,1.傳給左邊的一個,i -> i-1,2.傳給右面的一個i-1 -> i
由於圍着坐可以看成一個還,設:xi表示第i個人給第i-1個人xi個金幣,如果xi是正數表示第i個人給了第i-1個人xi個金幣,如果xi十負數則可以理解成第i-1個人給了第i個人xi個金幣,而每個人本身有一定的金幣, 那麼有這麼一個等式成立: Ai-xi+x(i+1) = M
如果上面描述你感覺還是不太清楚的話可以這樣理解: 假設有4個人,
對於第1個人:A1-x1+x2 = M -> x2 = M-x1+A1 = x1-(A1-M)
對於第2個人:A2-x2+x3 = M -> x3 = M-x2+A2 = x1-(A1+A2-2M)
對於第3個人:A3-x3+x4 = M -> x4 = M-x3+A3 = x1-(A1+A2+A3-3M)
對於第四個等式就沒有利用價值了,因爲前N-1個已經可以用x1表示出來了
設Sum = |x1-(A1-M)| + |x1-(A1+A2-2M)| + ... + |x1-(A1+A2+...+An-1-(n-1)*M|;
那麼問題就可以看成求Sum的最小值,對於最小求這個最小值可以把其看成是在一個一維的數軸上x1與每個點的距離,那麼求各個點的中位數,然後算出來就是問題的答案
還有一個要注意的問題就是精度問題,題目說了要不小於2^64.
而對於求中位數這裏我使用了時間複雜度爲O(nlogn)的算法,對於題目的檜木(N <= 10^6) 滿足題目要求

#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <stack>
#include <queue>
#include <deque>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;

#define DIR     4
#define DIM     2
#define STATUS  2
#define MAXN    1000000 + 10
#define MAXM    100000 + 10
#define oo      (~0u)>>1
#define INF     0x3F3F3F3F
#define REPI(i, s, e)   for(int i = s; i <= e; i ++)
#define REPD(i, e, s)   for(int i = e; i >= s; i --)

static const double EPS = 1e-5;

typedef struct ArcNode_ {
        int u, v, w, next;
}ArcNode;

long long ori_coin[MAXN], dis[MAXN];

int main(int argc, char const *argv[])
{
#ifndef ONLINE_JUDGE
        freopen("test.in", "r", stdin);
#endif
        int n, idx;
        unsigned long long M, rst;
        while( ~scanf("%d", &n) ) {
                M = 0L;
                REPI(i, 1, n) {
                        scanf("%lld", &ori_coin[i]);
                        M += ori_coin[i];
                }
                M /= n;
                dis[0] = 0;
                REPI(i, 1, n) dis[i] = dis[i-1]+ori_coin[i]-M;
                sort(dis+1, dis+1+n);
                idx = n>>0x1;
                if( n&1 ) idx += 1;
                rst = 0L;
                REPI(i, 1, n) rst += abs(dis[idx]-dis[i]);
                printf("%llu\n", rst);
        }
        return 0;
}



Good afternoon, ladies and gentlemen. Today, I would like to talk to you about one of the most influential figures in Chinese history - Confucius. Confucius, also known as Kong Qiu, was born in 551 BCE in the state of Lu, which is now part of modern-day Shandong Province in China. He was a philosopher and educator who devoted his life to teaching and spreading his beliefs about morality, ethics, and social order. Confucius's teachings focused on the importance of personal and social responsibility, and he emphasized the value of education and self-improvement. He believed that everyone had a duty to act with compassion, empathy, and respect for others, regardless of their social status or wealth. One of Confucius's most famous sayings is, "Do not do unto others what you would not have them do unto you." This idea, known as the "Golden Rule," is a cornerstone of many religions and ethical systems around the world. Confucius's teachings had a profound impact on Chinese culture and society, and his ideas continue to be studied and followed today. His philosophy of Confucianism has shaped the way people think about education, government, and social order in China and beyond. In conclusion, Confucius was a visionary and inspiring figure who left a lasting legacy on Chinese history and culture. His teachings about morality, ethics, and social responsibility continue to resonate with people today, and his impact on the world will be felt for generations to come. Thank you for listening.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值